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We know a number of important roles
for RNA structure

Catalytic(e.g. ribosomal RNA is added to the
list of ribozymes.)

Binding( RNA-protein, RNA-RNA, RNA-DNA and
RNA-small molecule, other?) involved in 
regulation and localization.  

Purely structural?



RNA Informatic issues

Some databases:   Sequence database  
Structural motif database
Functional structural database

Analysis program repositories and servers



www.imb-jena.de/RNA.html



www.rnabase.org/



Oberon.rug.ac.be:8080/rRNA/indes.html



scor.lbl.gov/index.html



www.rna.icmb.utexas.edu



bighost.area.ba.cnr.it/BIG/UTRHome



Rfam.wustl.edu



114
families

rfam.wustl.edu



www.bioinfo.rpi.edu/~zukerm/rna/



protein3d.ncifcrf.gov/shuyun/rna2d.html



Our goal is to predict structure from
sequence

Primary sequence

Secondary structure

Tertiary structure(e.g. pseudoknots, etc.)

Ultimately atomic scale models



Some Rules for RNA Folding
(severely simplified)

Single stranded nucleic acids can fold back on themselves
to form regions of typical duplex structure(called “stems”)

Watson-Crick rules: A:U, G:C, (G:U -”wobble”)are favorable

Thermodynamic refinements:
benefits for helical stacking
penalties for loops ( hairpin, internal, and multi-
branched).

Rules are undergoing long term, gradual refinement so that
they can now correctly predict “most” of the base pairs
observed in known structures.

BUT, they are not 100% correct. 



An example of RNA secondary structure

hairpin 

bulge

stem

internal

Mult-branch

(Drawn with Shapiro et al STRUCTURELAB)



Atomic level structural model of HIV-1
RRE core



Maximally stable secondary structure

One of the most widely used approaches employs base
pair and loop parameters, calibrated from thermodynamic
experiments on small RNA molecules, to deduce the lowest 
free energy structure.

Zuker’s implementation of a dynamic programming algorithm
first described by Ruth Nussinov and co-workers in the 
early 1970’s is called mfold.

We use variations of this program extensively.

Other approaches exist. (genetic algorithms, phylogenetic,
monte carlo, linguistic, etc.) 



How we judge the significance of a 
structure

A random sequence of bases can fold into a structure
that looks real.

We initially focus on the stability of a real sequence’s
structure compared to the stability of a large number of 
structures from randomly shuffled sequences of the same 
base composition.

Statistical significance is obtained, but since that may
or may not reflect biological significance, we follow
the suggestion of Karlin and refer to statistically
significant folded structures as statistically “unusual”
folding regions, or UFRs.



The main workhorses

SIGSTB scans a sequence for potential unusual folding
regions(UFRs).

SEGFOLD employs a systematic search with automatically
varying window size to define the limits of the UFRs.

EDscan looks for well-formed folding regions.



How  SIGSTR and SEGFOLD Find 
Statistically Unusual Features

The Principle:

Choose successive, overlapping segments

5’ 3’

Shuffle, FOLDFOLD

Obtain stability of
real segment

Average stability of shuffled 
segments, and std. deviation

(stability of real) - (Av. Stability of shuffled)

Z-score =
(Std. Deviation of the shuffled)



Example Z-score plot



How  How  EDscanEDscan finds statistically well folded finds statistically well folded 
regions (regions (WFR’sWFR’s))

The Principle:
Choose successive, overlapping segments

5’ 3’

FOLD FOLD after excluding
all pairs in the optimal structure

Ediff = difference between real fold and excluded fold 

Ediff(w) is mean of all segments in the sequence, 
and stdw is their standard deviation.

Zscre = ( Ediff - Ediff(w) ) / stdw



Marks the location
of known let-7 features.

ED_SCAN finds letED_SCAN finds let--7 gene features7 gene features

500                   1000                1500                  2000
C. elegans : accession no. AF274345

500                   1000                1500                  2000
C. briggsae : accession no. AF210771

54861                   55361                    55861         56361
D.melanogaster : accession no. AE003659

window size: 75nt, Turner energy rules



Well determined structures in letWell determined structures in let--7 genes7 genes



Early view of mRNA

AUG Coding region UGA

But now it’s more interesting
Coding region5’UTR 3’utr

UTR = Untranslated Region



Discovering features in 5’ and 3’ 
UTRs

5’ UTR features

Internal ribosome entry sequence (IRES); may be
developmentally controlled

Iron response element (IRE)
Neurovirulence mutations in poliovirus
(Others ???)

3’ UTR features

Poly A addition site
mRNA stability
Intracellular localization in development

e.g.anterior/posterior egg pole
Effects on translation; may be developmentally

controlled (e.g. frog onconase-related RNAse)
(Others ???)



Utrdb15.0



5UTR db



Drosophila upstream AUGs



Drosophila 5’UTR length distributions



Today’s talk(continued)

Chapter 1:  
Computer prediction of RNA structure

Chapter 2:
Application of computer tools to 5’UTRs of
virus and cellular mRNAs

Chapter 3:
A discovery of novel features in
a long 3’ UTR



IRES in translation



Internal Ribosome Entry Sequences(IRES)

The poliovirus genome, which is an mRNA, presented a
paradox to Kozak’s “scan to the first AUG” model.
There are a number of upstream AUGs before the true
initiator codon in the 743 nt, 5’UTR.

Sonenberg and co-workers showed definitively 
that ribosomes initiated internally.

Structure predictions show similar features in a
wide range of organisms from viruses to cellular
proteins,  including many oncogenes.

Now some examples.



list of viral ires



SIGSTB plot for a picornavirus(HCV)



pv3 ires



group 1picorna ires



group 2 picorna ires



group 3 picorna ires



Cell , virus and intron IRES cores summary

Cellular
IRES

Viral IRES

Group I intron



Some examples of cellular IRESs

Following the establishment of the phenomenon
in viruses, a number of cellular mRNAs exhibiting
long 5’UTRs with upstream AUGs, and IRESs were
observed.

Reasonable structures could be predicted for those
cases where experimental data existed. 

This provides a rationale for extending the 
predictions to untested 5’UTRs.



cellular 5’utr maps



Distributions of significance scores (Sigscr, broken curve) and 
stability scores (Stbscr, continuous curve) in human BiP mRNA 

sequence. 



Human, rat and hamster BiP IRES



Trypanosome and giardia BiP IRES



C. elegans and yeast BiP IRES



Human and rat FGF-2 IRES



Fig 7



Fig 6



Vegf 5utr



Vegf aln



Platelet derived growth factor(PDGF) 
provides the interesting first example

of a differentiation specific IRES

This is a collaboration between the laboratory
of Orna Elroy-Stein at Tel Aviv University and
Le of the LECB.

Normally the 5’UTR inhibits translation, but
during differentiation of megakaryocytes in 
bone marrow, or in phorbol ester
stimulation, translation is elevated.



Secondary structure model of the 5-UTR of human PDGF



Sequence alignment of the 3’ portion of PDGF2/c-sis 5-UTR. Sequences 
of human, mouse, and cat 



PDGF stem-loops tested for IRES function
by deletion mutations



C-sis mutants



pdgf deletion table



Today’s talk(continued)

Chapter 1:  
Computer prediction of RNA structure

Chapter 2:
Application of computer tools to 5’UTRs of
virus and cellular mRNAs

Chapter 3:
Discovery of novel features in
a long 3’ UTR



Known 
patterns
in UTRs



Function and structure in a 3’UTR from
Rana pipiens

This is from collaboration with the Rybak lab where
cytotoxic RNAse-type proteins are being investigated as
anti-tumor immuno-conjugates.

While cloning the cytotoxic RNAse an mRNA was found that
had a very long 3’UTR of 2377nt.

Although present as an mRNA in the liver in high 
levels, it was not translated.

When the 3’UTR was truncated it was efficiently
translated in vitro.

This led to examining the sequence for potential
structures.



rapLR1 map



rapLR1 z-score



rapLR1 stalk-like UFRs



Extension to other 3’UTRs

Work will continue on rapLR1 RNA.

Meanwhile we used the structure of the stalk to 
create a template for the RNAMOT motif searching
program.



There are more UTRs to be studied

There a number of known mRNAs with long UTRs.

The Pesole et al database (UTRdb12.0) reports
38498 5’- and 46881 3’-UTRs, and counting.  

http://bigarea.area.ba.cnr.it:8000/EmbIT/UTRHome/

The observation and database of Drosophila 
by Cavener and Cavener suggests that more than 40%  
of mRNAs have long 5’UTRs.  This
pre-dates the availability of the complete
genome.



Distribution of 3'UTR Lengths for Sequences 
in the UTR-DB (Release 7.0, May 1998)

Table 1 --------------------------------------------------------------------------------------
Files            Total No.    No. of Seq     No. of Seq   No. of Seq   No. of Seq   Mean of

of Sequence  (Len > 100-nt)   (> 200-nt)   (> 300-nt)   (> 600-nt)   Length

Hum_3utrnr.dat    7503          6767            5726         4813        3062       738-nt 
(Human)

Om_3utrnr.dat     2457          2021            1513         1183         636       477-nt
(Mammalian)

Ro_3utrnr.dat     7633          6783            5670         4614        2687       620-nt
(Rodent)

Ov_3utrnr.dat     3499          3008            2306         1817         959       485-nt
(Vertebrate)
In_3utrnr.dat     5067          3841            2551         1917         989       396-nt

(Invertebrate)
Pl_3utrnr.dat     8116          7574            4617         1585         192       242-nt
(Plant)

Fun_3utrnr.dat    1154           904             492          278          74       248-nt
(Fungal)   
--------------------------------------------------------------------------------------------





























Example significance score scan by program SIGSTB on BRCA2  Example significance score scan by program SIGSTB on BRCA2  
(U43746)       BREAST CANCER 2, EARLY(U43746)       BREAST CANCER 2, EARLY--ONSET mRNA ( 200 nt ONSET mRNA ( 200 nt 
windows)windows)

5’UTR 3’ UTRCoding region

Window starting position

Sigscr

BRCA2           U43746       BREAST CANCER 2, EARLY-ONSET



Minimum energy folding of the highly significant  UFR Minimum energy folding of the highly significant  UFR 
in the 3’in the 3’--untranslated region of BRCA2 mRNAuntranslated region of BRCA2 mRNA

This structure has a 
highly significant score
of 2.65 when tested for 
non-random morphology
by ST_COMP.



Combinined phylogenetic alignment 
and energy minimization in RNAGA



Obtaining a refined higher order structure

EFFOLD is used to explore alternative structures by
producing maximally stable structures when the energy
rules are perturbed slightly.  Zuker’s mfold can also
produce sub-optimal structures.

COMFOLD examines the covariation in paired bases between
foldings of phylogenetically related molecules or 
alternative energy foldings to produce a “consensus” 
folded structure.

RNAKNOT looks for favorable potential pairings between
the unpaired bases between 2 loops or between a loop and
an open strand.  These are often referred to as 
pseudoknots.

RNAMOT(Gautheret and Laferriere) can search 
for related structural motifs in data bases using patterns 
derived from the predicted structures.



Prediction of common secondary structures of RNAs: a genetic algorithm approach
Jih-H. Chen, Shu-Yun Le, and Jacob V. Maizel

Nucleic Acids Research 2000, Vol 28, No.4, 991-999.

Predicts a common RNA secondary structure without knowing or finding the 
alignment of sequences using a genetic algorithm(GA) approach.

GAs operate on a population of tentative solutions in an encoded 
representation from a list of potential stems in each sequence. 

Randomly change some solutions(A mutation) and recombine parts of 
solutions(GA crossover), then select survivors by scoring function(energy 
and structural conservation).

Rank the solutions by a score closely related to the selection function.

In four test cases( 20 tRNAs, 25 5S rRNAs, seven rev response elements of 
HIV-1, and 10 rev response elements of HIV-2) fairly convincing common 
structures were obtained by RNAGA in the top 10 ranked solutions.

It is compute intensive. 2, 9.5, 30, and 40 hrs on a Dec alpha processor 
were needed, respectively, for the test cases.

Memory requirements are O(n2m2N2).n = number of all stems, m = max number 
of structures among N sequences.

Available by anonymous ftp at ftp.ncifcrf.gov/pub/users/chen/rnaga.tar.Z



Accuracy of RNAGA predictions



E. coli
5S rRNA

)



Alignment of 25  5S rRNAs



HIV-1 RRE
group M                    group O        

Less than 60% sequence
similarity between M and O



Structural alignment of seven HIV-1 RRE sequences



Figure 2



Consensus 
RRE for

HIV-2/SIV



Structural alignment of 10 RRE sequences of HIV-2/SIV



Atomic-level structural models

Atomic-level models can be derived by 
manual model building, or by programs.

We use Hugo Martinez’s program RNA2D3D
which literally folds a planar secondary 
structure model into 3D.

Refinements are done with molecular
mechanical/dynamical programsl, mainly
using the Kollman lab’s AMBER.



Looking forward -- Implications

UTRs will continue to be a gold mine of interesting 
structure/function phenomena for computational and 
experimental approaches.

There are already findings that RNA and protein
expression are often not directly proportional.
For example, Rudi Aebersold and co-workers find that yeast
mRNA levels, as measured by SAGE analysis do not 
successfully predict protein levels and vary as much as
30-fold.  This has serious implications for interpreting 
nucleic acid micro-array results.



Forward (continued)
Secondary structure parameters slowly improve, but
there is still a lot that can be done.

Higher order structure prediction is beginning to be
explored. 

Excitement is high as more experimental structures 
appear, but size is limited.  NMR can do 50-60nt,
X-ray can do more,  computer prediction of secondary
structure can do 7000, but not at atomic resolution.

Computer predictions are receiving some kind words.
See a paper by Tinoco and Bustamante(JMB 293, 271, 1999) 
discussing agreement between predictions from the Zuker mfold
program and some experimental results.

Computers are cost effective and rapidly increasing
in power.
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